计蒜客NOIP模拟赛-1 Day1 T2(乘法原理)

题目链接
这题居然没有想到乘法原理…还是要多想想乘法原理啊…

先dfs出$siz_i$为每个点子树大小。然后对每个边算次数。根据乘法原理,次数为$siz_i \times (n-siz_i)$,那么这条边对答案的贡献为$val \times siz_i \times (n-siz_i)$,然后就可以求了。

注意开long long,而且乘法会溢出所以要在中途每个强制转换

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define ms(i, j) memset(i, j, sizeof i)
#define LL long long
#define db double
using namespace std;
const int MAXN = 100000 + 5;
struct data {int v, w;}ed[MAXN * 2]; 
int en, n, siz[MAXN], val[MAXN];
vector<int> G[MAXN];
void ins(int x, int y, int c) {
    en++, ed[en].v = y, ed[en].w = c, G[x].push_back(en);//边权实际上不需要存,但是这存了就不改了 
}
void dfs(int u, int pa) {
    siz[u] = 1;
    for (int i=0;i<G[u].size();i++) {
        data p = ed[G[u][i]];
        int v = p.v, w = p.w;
        if (v != pa) {
            dfs(v, u);
            siz[u] += siz[v];
        }
    }
}
void clean() {
    en = 0;
    for (int i=0;i<=n;i++) siz[i] = val[i] = 0, G[i].clear();
}
void solve() {
    clean();
    for (int i=1;i<n;i++) {
        int x;
        scanf("%d%d", &x, &val[i + 1]);
        ins(x, i+1, val[i + 1]);
    }
    dfs(1, 0);
    LL ans = 0;
    for (int i=1;i<=n;i++) {
        ans += (LL)val[i] * (LL)(n - siz[i]) * (LL)siz[i];//防乘法溢出
    }
    printf("%lld\n", ans);
    int Q; scanf("%d", &Q);
    while (Q--) {
        int x, y;
        scanf("%d%d", &x, &y);
        ans += (LL)(y - val[x]) * (LL)(n - siz[x]) * (LL)siz[x];//防乘法溢出
        val[x] = y;
        printf("%lld\n", ans);
    }
}
int main() {
    scanf("%d", &n), solve();
    return 0;
}
------ 本文结束 ------