模板及讲解
加边a->b 代表选了a的话b也得选
例如 x->x` 表示选了x就必须选x` ,所以这个值必为x
有a, not a, a or b, a and b, a xor b
四种基本运算,例如:
1、A, B
至少选一个:A'->B, B'->A
(a or b
)
2、A, B
必须同时选:A->B, B->A
(a and b
)
3、A, B
只能选一个:A->B', B->A'
(a xor b
)
4、A
必选:A'->A
(a
)
5、A
不能选:A->A'
(not a
)
6、A
选或者B
不选:A'->B', B->A'
(a or not b
)
2-SAT模板题:BZOJ 2199
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#define ms(i,j) memset(i,j, sizeof i);
using namespace std;
const int MAXN = 1000 + 5;
const char orz[10] = {'Y', 'N', '?'};
int n,m;
int ans[MAXN];
struct twoSAT//这里标号从0开始
{
vector<int> G[MAXN*2];//邻接表
bool mark[MAXN*2];//每个点是否被标记
int n;
int init(int ni)//初始化
{
n = ni;
for (int i=0;i<2*n;i++) G[i].clear();
}
int addEdge(int x, int y, int xv, int yv)//加一个条件
{
x = x*2+xv;
y = y*2+yv;
G[x^1].push_back(y);
G[y^1].push_back(x);//2i是假,2i+1是真
}
int dfs(int x)
{
if (mark[x^1]) return false;//对应点被标记,不符合要求
if (mark[x]) return true;//已经被标记直接返回
mark[x] = true;//标记
for (int i=0;i<G[x].size();i++)//继续标记
{
if (!dfs(G[x][i])) return false;
}
return true;
}
int check(int x)//检查一个议案是否通过
{
ms(mark, false);
return dfs(x);
}
}ts;
int main()
{
scanf("%d%d", &n,&m);
ts.init(n);
for (int i=0;i<m;i++)
{
int bi,ci;
char vbi,vci;
scanf("%d %c %d %c", &bi,&vbi,&ci,&vci);
int vvbi = false, vvci = false;
if (vbi=='Y') vvbi = true;
if (vci=='Y') vvci = true;
ts.addEdge(bi-1,ci-1,vvbi,vvci);
}
for (int i=0;i<n;i++)
{
int p = ts.check(i*2);
int q = ts.check(i*2+1);
if (!p&&!q) {printf("IMPOSSIBLE"); return 0;}
if (p&&q) ans[i] = 2;
else if (!p) ans[i] = 0;
else ans[i] = 1;
}
for (int i=0;i<n;i++) putchar(orz[ans[i]]);
return 0;
}
Tarjan版本(Bzoj 1823):
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<stack>
#define ms(i, j) memset(i, j, sizeof i)
#define LL long long
#define db double
using namespace std;
int tb, n, m, belongs[2 * 100 + 5], vis[2 * 100 + 5], scc_num, dfn[2 * 100 + 5], low[2 * 100 + 5];
vector<int> G[2 * 100 + 5];//2x->m 2x+1->h
stack<int> s;
void tarjan(int u) {
dfn[u] = low[u] = ++tb, vis[u] = -1, s.push(u);
for (int i = 0; i < (int)G[u].size(); i++) {
int v = G[u][i];
if (vis[v] == 0) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if (vis[v] == -1) low[u] = min(low[u], dfn[v]);
}
if (low[u] == dfn[u]) {
int e;
scc_num++;
do {
e = s.top(); s.pop();
belongs[e] = scc_num;
vis[e] = 1;
} while (e != u);
}
}
int getss()
{
char ans;
while (true) {
ans = getchar();
if (ans == 'm') return 0;
if (ans == 'h') return 1;
int ret = 0;
while (ans >= '0' && ans <= '9') {
ret = ret * 10 + ans - '0';
ans = getchar();
}
if (ret > 0) return ret;
}
}
void clean() {
tb = scc_num = 0;
for (int i = 0; i <= 2 * 100 + 1; i++) dfn[i] = low[i] = belongs[i] = vis[i] = 0, G[i].clear();
}
void solve() {
scanf("%d%d", &n, &m);
clean();
char c1, c2;
int a1, a2;
for (int i = 1; i <= m; i++) {
c1 = getss(), a1 = getss(), c2 = getss(), a2 = getss();
int x = 2 * (a1 - 1) + (c1 == 1) , y = 2 * (a2 - 1) + (c2 == 1);
G[x].push_back(y ^ 1), G[y].push_back(x ^ 1);
}
for (int i = 1; i <= n * 2; i++) if (!vis[i]) tarjan(i);
for (int i = 1; i <= 2 * n; i += 2) {
if (belongs[i] == belongs[i ^ 1]) {
printf("BAD\n");
return ;
}
}
printf("GOOD\n");
}
int main() {
int T; scanf("%d", &T);
while (T--) solve();
return 0;
}