-
- 题目:
-
已知集合
A={(x,y)∣∣x2+y2⩽1,x,y∈Z},B={(x,y)||x|⩽2,|y|⩽2,x,y∈Z}, 定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B}, 则A⊕B 中元素的个数为()
A.77
B.49
C.45
D.30
-
- 考点:
- [集合中元素个数的最值]
-
- 分析:
- 由题意可得,A={(0,0),(0,1),(0,-1),(1,0),(-1,0),B={(0,0),(0,1),(0,2),(0,-1),(0,-2),(1,0),(1,1),(1,2)(1,-1),(1,-2)(2,0),(2,1),(2,2)(2,-1),(2,-2),(-1,-2),(-1,-1),(-1,0),(-1,1),(-1,2),(-2,-2),(-2,-1),(-2,0),(-2,1),(-2,2)},根据定义可求
-
- 解答:
-
解法一:
∵A={(x,y)|x2+y2≤1,x,y∈Z}={(0,0),(0,1),(0,-1),(1,0),(-1,0),
B={(x,y)||x|≤2,|y|≤2,x,y∈Z}={(0,0),(0,1),(0,2),(0,-1),(0,-2),(1,0),(1,1),(1,2)(1,-1),(1,-2)(2,0),(2,1),(2,2)(2,-1),(2,-2),(-1,-2),(-1,-1),(-1,0),(-1,1),(-1,2),(-2,-2),(-2,-1),(-2,0),(-2,1),(-2,2)}
∵A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},
∴A⊕B={(0,0),(0,1),(0,2),(0,-1),(0,-2),(1,0),(1,1),(1,2)(1,-1),(1,-2)(2,0),(2,1),(2,2),(2,-1),(2,-2),(-1,-2),(-1,-1),(-1,0),(-1,1),(-1,2),(-2,-2),(-2,-1),(-2,0),(-2,1),(-2,2),
(-2,3),(-2,-3),(0,-3),(2,-3),(-1,3),(-1,-3),(1,3),(2,3),(0,3),(3,-1),(3,0)(3,1),(3,2),(3,-2)(-3,2)(-3,1),(1,-3),(-3,-1),(-3,0),(-3,-2)}共45个元素 故选:C.
参考例题