BZOJ 4566
题意:给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数。两个方案不同当且仅当这两个子串中有一个位置不同。
一开始乱二分挂了……
其实这题就是Bzoj 3238 差异,我们可以想到连接两个字符串,中间用一个没出现过的字符连接,然后单调栈维护所有区间的最小值。但是这里是两个字符串,可能会有答案算到是同串的,那么我们考虑容斥。
即求三次后缀数组,第一次求连接串的答案,然后求两个原串的答案,最后用连接串答案减掉后面的两个原串答案即为最终答案,正确性显然。
知识点
1、多次求后缀数组,不要将思维局限
2、不要乱在height上二分
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<queue>
#include<set>
#define ms(i, j) memset(i, j, sizeof i)
#define LL long long
#define db double
#define fir first
#define sec second
#define mp make_pair
using namespace std;
namespace flyinthesky {
const int MAXN = 400000 + 5;
char ch[2][MAXN];
int a[MAXN], n, m;
int SA[MAXN], rk[MAXN], tp[MAXN], tax[MAXN], height[MAXN];
void build(int n) {//11?¨¬o¨®¡Áo¨ºy¡Á¨¦
for (int i = 1; i <= m; ++i) tax[i] = 0;
for (int i = 1; i <= n; ++i) tax[rk[i] = a[i]]++;
for (int i = 1; i <= m; ++i) tax[i] += tax[i - 1];
for (int i = n; i >= 1; --i) SA[tax[rk[i]]--] = i;//?¨´¨ºy??D¨°??¦Ì¨²¨°???
for (int k = 1; k <= n; k <<= 1) {
int p = 0;
for (int i = n - k + 1; i <= n; i++) tp[++p] = i;//(n-k)~(n-1)?T¦Ì¨²?t1??¨¹¡Á?¡ê??¨´¨°???D¨°¨®|?????¨²?¡ã??
for (int i = 1; i <= n; i++) if (SA[i] > k) tp[++p] = SA[i] - k;
//??¨®DSA[i]>=k¦Ì?SA[i]2?¨º?¦Ì¨²?t1??¨¹¡Á?¦Ì?????
//¡ä¨®¨ª??D?¨¦¨°??¡ä3?¦Ì¨²¨°?1??¨¹¡Á?o¨ª¦Ì¨²?t1??¨¹¡Á?¦Ì??????¨¤2?k¡ê?1¨ºSA[i] - k
for (int i = 1; i <= m; ++i) tax[i] = 0;
for (int i = 1; i <= n; ++i) tax[rk[tp[i]]]++;//x[tp[i]]?¨¤¦Ì¨¨¨®¨²????¦Ì¨²i¦Ì?¦Ì¨²?t1??¨¹¡Á?¦Ì?¦Ì¨²¨°?1??¨¹¡Á?¦Ì?????
for (int i = 1; i <= m; ++i) tax[i] += tax[i - 1];
for (int i = n; i >= 1; --i) SA[tax[rk[tp[i]]]--] = tp[i];//¡À¡ê?¡è¨¢?¦Ì¨²¨°?1??¨¹¡Á?¦Ì??3D¨°?¨´??¦Ì¨²?t1??¨¹¡Á?
//?¨´¨ºy??D¨°¦Ì¨²¨°?1??¨¹¡Á?(rank[i]¦Ì?¨ºy?¦Ì)o¨ª¦Ì¨²?t1??¨¹¡Á?(tp[i]¦Ì???¡À¨º)
swap(rk, tp);//¡ä?¨º¡Àtp??¨®?¡ê??Y¡ä?¨¦?¨°???rank¦Ì??¦Ì
p = 1, rk[SA[1]] = 1;
for (int i = 2; i <= n; ++i)
rk[SA[i]] = (tp[SA[i]] == tp[SA[i - 1]] && tp[SA[i] + k] == tp[SA[i - 1] + k]) ? p : ++p;
//??????¦Ì¨²i¦Ì?¨ºy¦Ì?rank¡ê?¡ã¡äsa?3D¨°?¨¹1?¡À¡ê?¡èrank¦Ì??y¨¨¡¤D?¡ê?¦Ì?¨º?¨°acmp?D??¨®?¨¦?¨°???¡Á?¡¤?¡ä??¨¤¦Ì¨¨¦Ì??¨¦??
if (p >= n) break;//???|¡ê?¨°??-??¨®D???¡ä?a??
m = p;
}
int k = 0;//k¨º?¡À¨¨i-1?¡ã¨°???¦Ì?o¨®¡Áo
for (int i = 1; i <= n; ++i) {//H[0], H[1], H[2] ...¦Ì??3D¨°????
if (k) k--;//¡ä¨®k-1?a¨º?¡À¨¨?? ,??¨®??¨¢??H[i]>=H[i-1]-1, ¡Á?3¡è1?12?¡ã¡Áo¦Ì?3¡è?¨¨?¨¢¨¦¨´¨º?k-1(k = H[i-1])
int j = SA[rk[i] - 1]; //?¡ã¨°???¦Ì?o¨®¡Áo????
while (a[i + k] == a[j + k]) k++; //¨ª¨´o¨®¡À¨¨??
height[rk[i]] = k; //?¨¹D?¡äe¡ã?
}
}
LL L[MAXN], R[MAXN], st[MAXN], top = 0, ans = 0;
void clean() {
n = 0, m = 200, ms(height, 0), ms(SA, 0), ms(rk, 0), ms(tax, 0), ms(tp, 0), ms(L, 0), ms(R, 0), ms(st, 0);
}
int solve() {
// 1
clean();
scanf("%s", ch[0] + 1);
int tmp = strlen(ch[0] + 1);
for (int i = 1; i <= tmp; ++i) a[++n] = ch[0][i] - 'a' + 1;
a[++n] = '$';
scanf("%s", ch[1] + 1);
tmp = strlen(ch[1] + 1);
for (int i = 1; i <= tmp; ++i) a[++n] = ch[1][i] - 'a' + 1;
build(n);
st[top = 1] = 1;
for (int i = 2; i <= n; ++i) {
while (top && height[st[top]] > height[i]) R[st[top--]] = i;
L[i] = st[top];
st[++top] = i;
}
while (top) R[st[top--]] = n + 1;
for (int i = 1; i <= n; ++i)
ans += 1ll * (R[i] - i) * (i - L[i]) * height[i];
// 2
clean();
tmp = strlen(ch[0] + 1);
for (int i = 1; i <= tmp; ++i) a[++n] = ch[0][i] - 'a' + 1;
build(n);
st[top = 1] = 1;
for (int i = 2; i <= n; ++i) {
while (top && height[st[top]] > height[i]) R[st[top--]] = i;
L[i] = st[top];
st[++top] = i;
}
while (top) R[st[top--]] = n + 1;
for (int i = 1; i <= n; ++i)
ans -= 1ll * (R[i] - i) * (i - L[i]) * height[i];
// 3
clean();
tmp = strlen(ch[1] + 1);
for (int i = 1; i <= tmp; ++i) a[++n] = ch[1][i] - 'a' + 1;
build(n);
st[top = 1] = 1;
for (int i = 2; i <= n; ++i) {
while (top && height[st[top]] > height[i]) R[st[top--]] = i;
L[i] = st[top];
st[++top] = i;
}
while (top) R[st[top--]] = n + 1;
for (int i = 1; i <= n; ++i)
ans -= 1ll * (R[i] - i) * (i - L[i]) * height[i];
printf("%lld\n", ans);
return 0;
}
}
int main() {
flyinthesky::solve();
return 0;
}