BZOJ 1217
给你一棵树,上面可以放置一些点可以使距离其2的点染色,求最少放置点染色方案。
贪心做法:对于一个点,如果他的爷爷没有放置点,就放在爷爷上。因为这样可以最优,爷爷放点之后兼顾本节点、父亲节点、兄弟节点。
DP做法:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define ms(i, j) memset(i, j, sizeof i)
#define LL long long
#define db double
const int MAXN = 2000 + 10;
struct node {
int d, no;
node () {d = 0;}
bool operator < (const node &b) const {
return d > b.d;
}
}nd[MAXN];
int n, ans = 0, f[MAXN], whw[MAXN];//whw记录离其最近的点的距离
void clean() {
}
int solve() {
clean();
nd[1].no = 1, whw[1] = whw[0] = n, f[1] = 0;
for (int i = 2; i <= n; i++) scanf("%d", &f[i]), nd[i].d = nd[f[i]].d + 1, nd[i].no = i, whw[i] = n;
std::sort(nd + 1, nd + 1 + n);
for (int i = 1; i <= n; i++) {
int u = nd[i].no, v = f[u], w = f[f[u]];
whw[u] = std::min(std::min(whw[v] + 1, whw[w] + 2), whw[u]);
if (whw[u] > 2) ans++, whw[w] = 0, whw[f[w]] = std::min(whw[f[w]], 1), whw[f[f[w]]] = std::min(whw[f[f[w]]], 2);
}
printf("%d\n", ans);
return 0;
}
int main() {
scanf("%d", &n), solve();
return 0;
}