Codeforces 459E
题意:一个有向图,找出一条最长的路径,这条路径上的每条边权重都严格递增,问最长的长度是多少?
这题要求每条边权重都严格递增,那么直接把所有边权存起来按照大小排序,之后每种边权进行加边,就可以做 DP 了,因为排序保证了每条边权重都严格递增,只需要 DP 算出最优解即可。
本题求边权严格递增的路径,把边按照大小排序,把选择化为添加边,和CF 841D异曲同工。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#define ms(i, j) memset(i, j, sizeof i)
#define LL long long
#define db double
using namespace std;
const int MAXN = 300000 + 5;
int n, m, dp[MAXN], tmp[MAXN];
vector<pair<int, int > > ed[MAXN];
void clean() {
}
int solve() {
clean();
for (int u, v, w, i = 1; i <= m; i++) scanf("%d%d%d", &u, &v, &w), ed[w].push_back(make_pair(u, v));
for (int i = 1; i <= 100000; i++) {
if ((int)ed[i].size() == 0) continue;
for (int j = 0; j < (int)ed[i].size(); j++) {
int u = ed[i][j].first, v = ed[i][j].second;
tmp[v] = 0;
}
for (int j = 0; j < (int)ed[i].size(); j++) {
int u = ed[i][j].first, v = ed[i][j].second;
tmp[v] = max(dp[u] + 1, tmp[v]);
}
for (int j = 0; j < (int)ed[i].size(); j++) {
int u = ed[i][j].first, v = ed[i][j].second;
dp[v] = max(dp[v], tmp[v]);
}
}
int ans = 0;
for (int i = 1; i <= n; i++) ans = max(ans, dp[i]);
printf("%d\n", ans);
return 0;
}
int main() {
scanf("%d%d", &n, &m), solve();
return 0;
}