Codeforces 1095F
题意:给定字符串$s$,每个位有一个权值,删掉一个位代价为这个权值。请求出最小使得字符串不包含子序列hard
的代价。
最优化问题想到DP,并且这题类似于 Bzoj 1030 AC自动机。
这里是一个匹配类状态的 DP,设$dp(i,j)$为前$i$位,$j=0$表示没有匹配,$j=[1,3]$表示匹配到了前缀h
, ha
, har
的最小代价。
转移则
dp[0][0] = 0;
for (LL j = 0; j < 4; ++j) dp[i][j] = dp[i - 1][j];
for (LL i = 1; i <= n; ++i) {
if (s[i] == 'h') {
dp[i][0] = dp[i - 1][0] + a[i]; // 将 `h` 删去
dp[i][1] = min(min(dp[i - 1][0], dp[i - 1][1]), dp[i - 1][1] + a[i]); // 不动或者将 `h` 删去
}
if (s[i] == 'a') {
dp[i][1] = dp[i - 1][1] + a[i]; // 将 `a` 删去
dp[i][2] = min(min(dp[i - 1][1], dp[i - 1][2]), dp[i - 1][2] + a[i]); // 不动或者将 `a` 删去
}
if (s[i] == 'r') {
dp[i][2] = dp[i - 1][2] + a[i]; // 将 `r` 删去
dp[i][3] = min(min(dp[i - 1][2], dp[i - 1][3]), dp[i - 1][3] + a[i]); // 不动或者将 `r` 删去
}
if (s[i] == 'd') {
dp[i][3] = dp[i - 1][3] + a[i]; // 将 `d` 删去
}
}
其实中间转移不需要dp[i - 1][3], dp[i - 1][3] + a[i]
,因为$a_i \geq 0$,所以直接写即可。
知识点:
1、匹配类状态的 DP
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<set>
#include<cmath>
#define ms(i, j) memset(i, j, sizeof i)
#define LL long long
#define db double
#define fir first
#define sec second
#define mp make_pair
using namespace std;
namespace flyinthesky {
LL n, a[100000 + 5], dp[100000 + 5][5], INF = 4223372036854775808ll;
char s[100000 + 5];
void clean() {
}
int solve() {
clean();
cin >> n;
scanf("%s", s + 1);
for (LL i = 1; i <= n; ++i) scanf("%lld", &a[i]);
for (LL i = 0; i <= n; ++i)
for (LL j = 0; j < 5; ++j) dp[i][j] = INF;
dp[0][0] = 0;
for (LL i = 1; i <= n; ++i) {
for (LL j = 0; j < 4; ++j) dp[i][j] = dp[i - 1][j];
if (s[i] == 'h') {
dp[i][0] = dp[i - 1][0] + a[i];
//dp[i][1] = min(min(dp[i - 1][0], dp[i - 1][1]), dp[i - 1][1] + a[i]);
dp[i][1] = min(dp[i - 1][0], dp[i - 1][1]);
}
if (s[i] == 'a') {
dp[i][1] = dp[i - 1][1] + a[i];
//dp[i][2] = min(min(dp[i - 1][1], dp[i - 1][2]), dp[i - 1][2] + a[i]);
dp[i][2] = min(dp[i - 1][1], dp[i - 1][2]);
}
if (s[i] == 'r') {
dp[i][2] = dp[i - 1][2] + a[i];
//dp[i][3] = min(min(dp[i - 1][2], dp[i - 1][3]), dp[i - 1][3] + a[i]);
dp[i][3] = min(dp[i - 1][2], dp[i - 1][3]);
}
if (s[i] == 'd') {
dp[i][3] = dp[i - 1][3] + a[i];
}
}
printf("%lld", min(min(dp[n][0], dp[n][1]), min(dp[n][2], dp[n][3])));
return 0;
}
}
int main() {
flyinthesky::solve();
return 0;
}